Michael Addition Reaction without Catalyst: The Synthesis of 2-Amino-5, 6, 7, 8-tetrahydro-5-oxo-4-aryl-7, 7-dimethyl-4H-benzo-[b]-pyran Derivatives

Shu Jiang TU*, Xiao Hong LIU, Heng Jun MA, Da Qing SHI, Fang LIU

Department of Chemistry, Xuzhou Normal University, Xuzhou 221009

Abstract: A series of tetrahydrobenzo-[b]-pyran derivative was synthesized by the reaction of arylmethylene malononitrile or arylmethylene cyanoacetate with dimedone in ethylene glycol at 80°C without catalyst. The structures of the two products were characterized by X-ray diffraction.

Keywords: Benzo-[b]-pyran, dimetone, ethylene glycol.

Michael addition reaction is one of the most important reactions in organic chemistry. Usually the acetic or basic catalyst was used¹⁻³. For example, compound **3a** or **4a** was obtained by Michael addition reaction of **1** and **2**, HOAC was used as catalyst. But we found when arylmethylene cyanoacetate or arylmethylene malononitrile **1** was heated with dimedone **2** for 2 hours at 80°C in ethylene glycol, the Michael addition could take place without any catalyst, the addition cyclodehydration products **3a~g** or **4a~g** were obtained (**Scheme 1**). The crystal structures of **3b** and **4a** were presented in **Figure 1**.

General procedure

Arylmethylene cyanoacetate or arylmethylene malononitrine (5 mmol), dimedone(5 mmol) and ethylene glycol (15 mL) were heated at 80°C for 2 hours, then cooled to room temperature. The reaction mixture was poured into 150 mL of water. The solid product was filtered, washed with ether, recrystallized from 95% EtOH to give $3a \sim g$ or $4a \sim g^4$.

Figure 1 The crystal structure of 3b, 4a

Table 1 The mp and yield of 3a~g and 4a~g

Compd.	Ar	Yield (%)	mp(°C) (lit)	Compd.	Ar	Yield (%)	mp(°C) (lit)
3a	C ₆ H ₅	61	146-148 (138)	4 a	C ₆ H ₅	91	232-233 (218)
3b	2-furyl	87	128-129	4b	2-BrC ₆ H ₄	92	150-152
3c	$2-ClC_6H_4$	90	166-168	4c	$4-BrC_6H_4$	80	160-162
3d	$4-ClC_6H_4$	75	149-150	4d	$2-NO_2C_6H_4$	96	196-198
3e	3,4-OCH ₂ OC ₆ H ₃	62	142-144	4e	4-(CH ₃) ₂ NC ₆ H ₄	89	220-222
3f	$3-NO_2C_6H_4$	86	172-174	4f	$4-HOC_6H_4$	88	206-208
3g	3,4-(OCH ₃) ₂ C ₆ H ₃	80	155-157	4g	3-HO-4-CH ₃ OC ₆ H ₃	93	228-230

References and Notes

- 1. S. Kamaljit, S. Jasbir, S. Harjit, *Tetrahedron*, **1996**, *52* (45), 14273.
- M. A. Hassanien. M. Zahrran, S. A. El-Gaby, M. M. Ghorab, J. Indian Chem. Soc., 1999, 76, 350.
- 3. M. H. El-Nagdi, F. A. Abd El-Aai, Y. M. Yassin, J. Prakt. Chem., 1989, 331, 971.
- Spectral data for compounds 3 and 4: 3b: mp 128-129°C. Y=87%. IR(KBr, v, cm⁻¹): 3452, 4 3321, 1696, 1660. ¹HNMR(CDCl₃): δ 1.02 (s, 3H, CH₃), 1.09(s, 3H, CH₃), 1.21 (t, 3H, J=7.11Hz, CH₃), 2.25 (s, 2H, CH₂), 2.41 (s, 2H, CH₂), 4.10 (q, 2H, J=7.05Hz, CH₂), 4.98 (s, 1H, CH), 6.27 (brs, 2H, NH₂), 6.05-7.17 (m, 3H, furan H). Anal. calcd.(%) for C₁₈H₂₁NO₅, C 65.24, H 6.39, N 4.22; found: C 65.32, H 6.44, N 3.99. 3c: mp 166-168°C. Y=90%. IR(KBr, v, cm⁻¹): 3400, 3300, 1680, 1654. ¹HNMR(CDCl₃): δ 0.99 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.12 (t, 3H, J=7.11Hz, CH₃), 2.19 (m, 2H, CH₂), 2.41 (s, 2H, CH₂), 4.01 (q, 2H, J=7.12Hz, CH₂), 5.00 (s, 1H, CH), 6.27 (brs, 2H, NH2), 7.04-7.32 (m, 4H, ArH). Anal. calcd.(%) for C₂₀H₂₂CINO₄, C 63.91, H 5.90, N 3.72; found: C 63.80, H 6.12, N 3.83. **3d**: mp 149-150°C. Y=75%. IR(KBr, ν, cm⁻¹): 3438, 3304, 1680, 1658. ¹HNMR(CDCl₃): δ 0.98 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.14 (t, 3H, J=7.11Hz, CH₃), 2.14 (m, 2H, CH₂), 2.43 (s, 2H, CH₂), 4.06 (q, 2H, J=7.11Hz, CH₂), 4.68 (s, 1H, CH), 6.21 (brs, 2H, NH₂), 7.16-7.30 (m, 4H, ArH). Anal. calcd.(%) for C₂₀H₂₂ClNO₄, C 63.91, H 5.90, N 3.72; found: C 63.79, H 6.10, N 3.90. 3e: mp 142-144°C. Y=62%. IR(KBr, ν, cm⁻¹): 3402, 3300, 1683, 1657. ¹HNMR(CDCl₃): δ 1.00 (s, 3H, CH₃), 1.10 (s, 3H, CH₃), 1.17 (t, 3H, J=7.14Hz, CH₃), 2.18 (m, 2H, CH₂), 2.43 (s, 2H, CH₂), 4.08 (q, 2H, J=7.14Hz, CH₂), 4.64 (s, 1H, CH), 5.93 (s, 2H, OCHO), 6.17 (brs, 2H, NH2), 6.71-6.76 (m, 3H, ArH). Anal. calcd.(%) for $C_{21}H_{23}NO_6,\ C$ 65.44, H 6.01, N 3.63; found: C 65.32, H 5.92, N 3.78. 3f: mp 172-174°C. Y=86%. IR(KBr, v, cm⁻¹): 3500, 3310, 1698, 1679. ¹HNMR(CDCl₃): δ 0.98 (s, 3H, CH₃), 1.11 (s, 3H, CH₃), 1.15 (t, 3H, J=7.11Hz, CH₃), 2.18 (m, 2H, CH₂), 2.47 (s, 2H, CH₂), 4.04 (q, 2H, J=7.14Hz, CH₂), 4.79 (s, 1H, CH), 6.33 (brs, 2H, NH₂), 7.35-8.10 (m, 4H, ArH). Anal. calcd.(%) for C₂₀H₂₂N₂O₆, C 62.16, H

Michael Addition Reaction without Catalyst

5.74, N 7.25; found: C 62.07, H 5.90, N 7.38. **3g**: mp 155-157 °C. Y=80%. IR(KBr, v, cm⁻¹): 3448, 3346, 1698, 1662. ¹HNMR(CDCl₃): δ 0.98 (s, 3H, CH₃), 1.09 (s, 3H, CH₃), 1.18 (t, 3H, J=7.11Hz, CH₃), 2.19 (m, 2H, CH₂), 2.41 (s, 2H, CH₂), 3.81 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.05 (q, 2H, J=7.08Hz, CH₂), 4.65 (s, 1H, CH), 6.21 (brs, 2H, NH₂), 6.70-6.86 (m, 3H, ArH). Anal. calcd.(%) for C₂₂H₂₇NO₆,C 65.82, H 6.78, N 3.49; found: C 65.93, H 6.70, N 3.50. **4b**: mp 150-152 °C. Y=92%. IR(KBr, v, cm⁻¹): 3394, 3282, 2197, 1649. ¹HNMR(CDCl₃): δ 1.07 (s, 3H, CH₃), 1.11 (s, 3H, CH₃), 2.16-2.24 (m, 2H, CH₂), 2.45 (s, 2H, CH₂), 4.64 (s, 2H, NH₂), 4.90 (s, 1H, CH), 7.03-7.52 (m, 4H, ArH). Anal. calcd.(%) for C₁₈H₁₇BrN₂O₂, C 57.91, H 4.56, N 7.51; found: C 57.98, H 4.47, N 7.48. 4c: mp 196-198°C. Y=96%. IR(KBr, v, cm⁻¹): 3394, 3282, 2191, 1682. ¹HNMR(CDCl₃): δ 1.02 (s, 3H, CH₃), 1.10 (s, 3H, CH₃), 2.15-2.25 (m, 2H, CH₂), 2.46 (s, 2H, CH₂), 4.31 (s, 1H, CH), 5.84 (s, 2H, NH₂), 7.11-7.40 (m, 4H, ArH). Anal. calcd.(%) for C₁₈H₁₇BrN₂O₂, C 57.91, H 4.56, N 7.51; found: C 57.99, H 4.48, N 7.48. 4d: mp 220-222°C. Y=89%. IR(KBr,v,cm⁻¹): 3471, 3332, 2192, 1685. ¹HNMR(CDCl₃): δ 0.97 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 2.08-2.20 (m, 2H, CH₂), 2.46 (s, 2H, CH₂), 5.16 (s, 1H, CH), 5.67 (s, 2H, NH₂), 7.31-7.77 (m, 4H, ArH). Anal. calcd.(%) for C₁₈H₁₇N₃O₄, C 63.71, H 5.01, N 12.39; found: C 63.82, H 5.00, N 12.32. 4e: mp 208-210°C. Y=92%. IR(KBr, v, cm⁻¹): 3382, 3321, 2191, 1681. ¹HNMR(CDCl₃): δ 1.03 (s, 3H, CH₃), 1.10 (s, 3H, CH₃), 2.15-2.23 (m, 2H, CH₂), 2.44 (s, 2H, CH₂), 2.89 (s, 6H, (CH₃)₂N), 4.26 (s, 1H, CH), 5.42 (s, 2H, NH₂), 6.62-7.06 (m, 4H, ArH). Anal. calcd.(%) for C₂₀H₂₃N₃O₂, C 71.21, H 6.82, N 12.46; found: C 71.27, H 6.77, N 12.28. 4f: mp 206-208°C. Y=88%. IR(KBr, v, cm⁻¹): 3651, 3327, 3163, 2191, 1664. ¹HNMR(CDCl₃): δ 1.05 (s, 3H, CH₃), 1.10 (s, 3H, CH₃), 2.14-2.23(m, 2H, CH₂), 2.43 (s, 2H, CH₂), 4.26 (s, 1H, CH), 5.34 (s, 2H, NH₂), 6.72-7.03 (m, 4H, ArH). Anal. calcd.(%) for C₁₈H₁₈N₂O₃, C 69.68, H 5.81, N 9.03; found: C 69.72, H 5.90, N 9.00. 4g: mp 228-230°C. Y=93%. IR(KBr, v, cm⁻¹): 3496, 3308, 3255, 2192, 1678. ¹HNMR(CDCl₃): δ 1.04 (s, 3H, CH₃), 1.10 (s, 3H, CH₃), 2.20-2.22 (m, 2H, CH₂), 2.40 (s, 2H, CH₂), 3.78 (s, 3H, OCH₃), 4.29 (s, 1H, CH), 5.25 (s, 2H, NH₂), 6.59-6.78 (m, 3H, ArH), 6.80 (s, 1H, OH). Anal. calcd.(%) for C₁₉H₂₀N₂O₄, C 67.06, H 5.88, N 8.28; found: C 67.00, H 5.80, N 8.30.

Received 17 July, 2001